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geometries and material (hardening) based upon fully-plastic solutions. A summary of
the methodology upon which J and CTOD are derived sets the necessary framework to
determine nondimensional functions h; and h, applicable to a wide range of crack geom-
etries and material properties characteristic of structural, pressure vessel and pipeline

ﬁ?}' ‘tlzorrisl: steels. The extensive nonlinear, 3-D numerical analyses provide a definite full set of solu-
CTODg tions for J and CTOD which enters directly into fitness-for-service (FFS) analyses and defect
Fully plastic solutions assessment procedures of cracked pipes and cylinders subjected to bending load.

EPRI methodology © 2009 Elsevier Ltd. All rights reserved.
Circumferential surface crack

Pipeline

Defect assessments

1. Introduction

Fracture assessments of circumferential surface flaws in structural components play an important role in current appli-
cations of fitness-for-service (FFS) procedures for repair decisions and life-extension programs of critical engineering struc-
tures. These crack-like defects are most often formed during in-service operation and exposure to aggressive environment
(such as, for example, stress corrosion assisted cracks) or during welding fabrication. Structural components falling into this
category include girth welds made in field conditions for deep water steel catenary risers. More efficient and faster instal-
lation methods for these structures now underway employ the pipe reeling process which allows welding and inspection to
be conducted at onshore facilities (see e.g. [1,2]). The welded pipe is coiled around a large diameter reel on a vessel and then
unreeled, straightened and finally deployed to the sea floor. However, the reeling process subjects the pipe to high levels of
bending load and plastic deformation with potential strong impact on unstable crack propagation of undetected (circumfer-
ential) flaws at girth welds. With the increasing demand to meet more stringent requirements of structural safety while, at
the same time, complying with current economical constraints, the specification of acceptable flaw sizes and safety margins
remains essential.

Defect assessment procedures of cracked pipes and cylinders under varying loading conditions rely heavily on the accu-
rate evaluation of crack driving forces, such as the (Mode I) linear elastic stress intensity factor, K;, and the elastic-plastic J-
integral (or, equivalently, the crack tip opening displacement, CTOD or §) [3-6]. These measures of crack-tip loading provide
a means to correlate the severity of crack-like defects to the operating conditions in terms of the simple axiom that fracture
occurs when the applied crack driving force reaches a critical value as given by Kj, J. or .. Previous research efforts have

* Corresponding author. Tel.: +55 11 30915350; fax: +55 11 30915717.
E-mail address: claudio.ruggieri@usp.br (C. Ruggieri).

0013-7944/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engfracmech.2009.10.001


http://dx.doi.org/10.1016/j.engfracmech.2009.10.001
mailto:claudio.ruggieri@usp.br
http://www.sciencedirect.com/science/journal/00137944
http://www.elsevier.com/locate/engfracmech

416 M.S.G. Chiodo, C. Ruggieri/Engineering Fracture Mechanics 77 (2010) 415-436
Nomenclature
a crack depth
b remaining crack ligament
c circumferential crack half-length
d, dimensionless constant which relates | and CTOD
8ii dimensionless function of spatial position and strain hardening
hq dimensionless proportionality parameter between J, and applied loading
h, dimensionless proportionality parameter between d, and applied loading
m dimensionless constant which relates | and CTOD under small scale yielding (SSY)
n Ramberg-0sgood strain hardening exponent
n; outward normal (unit vector) to I”
r distance to the crack tip (polar or cylindrical radial coordinate)
t wall thickness
U; cartesian components of displacement
B strain-displacement matrix based on the B-bar formulation
CTOD  crack tip opening displacement
D, external pipe diameter
E.E Young’s modulus under plane stress (plane strain) conditions
EPRI Electric Power Research Institute
FFS fitness-for-service
Gs influence coefficient to compute the stress intensity factor
I integration constant for the HRR fields
] J-Integral
1> second invariant of the stress deviator tensor
Je critical value of J Integral
Je elastic component of the J -Integral
Ip plastic component of the J -Integral
Ip normalized plastic component of J-integral
Jpred predicted value of | -integral
Jreel maximum J -value attained in the reeling simulation
I J-value corresponding to the limit bending moment using the material’s ultimate tensile stress
Jy J-value corresponding to the limit bending moment using the material’s yield stress
K; stress intensity factor
Kic critical value of the stress intensity factor
LLD load line displacement
14 characteristic length for the cracked component
M applied bending moment
M, limit bending moment
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generalized applied load

generalized limit load

flaw shape parameter

bending radius

external radius of pipe

internal radius of pipe

mean radius of pipe

structural component width

stress-work density

dimensionless parameter of the Ramberg-Osgood model

angular parameter related to the circumferential surface crack geometry
arbitrary counter-clockwise path around the crack tip

crack tip opening displacement

critical value of the crack tip opening displacement

elastic component of crack tip opening displacement

plastic component of crack tip opening displacement

normalized plastic component of crack tip opening displacement
é-value corresponding to the limit bending moment using the material’s ultimate tensile stress
é-value corresponding to the limit bending moment using the material’s yield stress
load line displacement

true (logarithmic) strain

elastic strain component
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& plastic strain component

&ys yield strain

& longitudinal bending strain

€0 o maximum value of longitudinal bending strain
Lk coefficients for the polynomial fitting of factor h,
n nondimensional parameter describing the plastic contribution to the strain energy
0 half angle describing the surface crack length

\J Poisson’s ratio

Ex coefficients for the polynomial fitting of factor h,
Po initial crack tip blunting radius

o true stress

o) global or net-section bending stress

i cartesian components of stress

Gjj dimensionless function of HRR singularity

Outs ultimate tensile stress

Oys yield stress

provided an extensive body of K; solutions for a variety of crack configurations, including circumferentially cracked cylinders,
which are readily available through several compendia [7-11]. In contrast, a full set of ] and CTOD solutions for varying crack
geometries and loading modes directly connected to the description of fracture behavior under large scale yielding condi-
tions is still lacking.

Current evaluation procedures for J focus primarily on developing estimation schemes for its plastic component, denoted
Jp- These methodologies have evolved essentially along three lines of development: (1) estimation procedures relating the
plastic contribution to the strain energy and J; (2) fully plastic descriptions of ] based upon HRR-controlled crack-tip fields
and limit load solutions and (3) approximate descriptions of J derived from the concept of a reference stress coupled with
stress intensity factor solutions. The first approach employs a plastic #-factor introduced by Sumpter and Turner [12] to re-
late the macroscale crack driving force (J and CTOD) to the area under the load vs. load line displacement (or crack mouth
opening displacement) for cracked configurations (see also Refs. [13,14]). Because of its relative ease with which the load-
displacement records can be measured in conventional test specimens, the method is most suited for testing protocols to
measure fracture toughness such as ASTM E1820 [15]. The second approach derives from previous work of Kumar et al.
[16] building upon early investigation of Shih and Hutchinson [17] to introduce an estimation procedure for J, applicable
to elastic-plastic materials following a power hardening law such as the Ramberg-Osgood model [5,10,18]. Here, J, is ex-
pressed in the general form j, oc hy(a/W, ¢, n)(P/Py)™" where a is the crack size, W denotes the component width, ¢ repre-
sents a characteristic length for the cracked component, n is the Ramberg-0Osgood strain hardening exponent, P defines a
generalized load and Py is the corresponding (plastic) limit load. Factor h; represents a nondimensional parameter dependent
upon crack size, component geometry and strain hardening properties which simply scales J, with (P/Py)™*'. The method
became widely known as the EPRI methodology and has later been expanded by Zahoor [19] to include additional geome-
tries such as circumferentially and axially cracked pipes under tensile and bending loads. However, these J solutions for cir-
cumferentially cracked pipes subjected to bending remain limited to very few crack geometries and strain hardening
properties. The third approach, most often referred to as the reference stress approach, is essentially a modification of the
EPRI methodology proposed by Ainsworth [20] to reflect more closely the flow behavior of real materials, particularly high
hardening materials such as austenitic stainless steels. Moreover, this approach enables evaluation of J, from simply using
available stress intensity factor solutions for the cracked component in connection with the adoption of parameter h; defined
for a linear material in which n=1.

While all these procedures share much in common, each method has certain relative advantages and disadvantages in
fracture mechanics applications. In particular, both the fully plastic (EPRI) and the reference stress methods prove suffi-
ciently applicable for a broad range of crack geometries and loading modes. Further, they provide essentially similar esti-
mates of crack driving forces for low to moderate deformation levels, as measured by J (CTOD), when the material’s
stress—strain behavior is adequately described by a power hardening law such as the Ramberg-Osgood model. However, this
picture becomes potentially more complex as the evolving plasticity progresses from contained to fully yielded conditions,
particularly for moderate to low hardening materials. Because parameter h; depends rather strongly on the strain hardening
exponent (this issue is addressed later in Section 4), adopting h; for a linear material with n =1 in Ainsworth’s model can
lead to unacceptably large errors in J estimations, especially for moderate to large n-values. While previous exploratory anal-
yses by Anderson [5] have shown that both approaches provide similar predictions of critical crack sizes in center cracked
panels, extension of these methodologies in accurate descriptions of crack-tip driving forces (as measured by J and CTOD) for
circumferentially cracked pipes under conditions of varying cracking geometries, material properties and loading modes re-
mains untested. These observations clearly underlie the need of reliable and yet simple evaluation procedures for crack-tip
driving forces in advanced defect assessment methodologies applicable to elastic-plastic and fully plastic conditions.
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The extension of fully plastic solutions for | and CTOD crack-tip driving forces for pipes with circumferential surface
cracks subjected to bending load for a wide range of crack geometries and strain hardening properties is the focus of this
paper. The present investigation broadens the applicability of current evaluation procedures for J and CTOD which enter di-
rectly into structural integrity analyses and flaw tolerance criteria. The presentation begins with a summary of the fully-plas-
tic solution upon which J and CTOD are derived which forms the basis of the adopted framework to determine the elastic—
plastic crack-tip driving forces for the analyzed cracked configurations. This is followed by the description of extensive 3-D
nonlinear analyses of circumferentially cracked pipes with surface flaws having different crack depth (a) over pipe wall
thickness (t) ratios and varying crack length for different strain hardening properties. The 3-D results cover a large set of
dimensionless functions relating the elastic-plastic crack-tip driving forces with the applied (remote) bending moment.
As a further refinement, a sensitivity analysis to assess the robustness of the R-O power-law fit in characterizing the
crack-tip driving forces is conducted. The study also examines an exploratory comparison between the resulting fully-plastic
solutions and finite element analyses of circumferentially cracked pipes subjected to reeling. The investigation provides a
fairly comprehensive body of numerical solutions for | and CTOD in circumferentially cracked pipes subjected to bending
while, at the same time, gaining additional understanding of the potential applicability of fully plastic solutions in cracked
structural components.

2. Fully plastic solutions for J and CTOD

Advanced procedures for defect assessment of engineering components and structures made of materials with sufficient
toughness require the knowledge of elastic—plastic crack-tip driving forces as characterized by the J-integral and CTOD.
While detailed, nonlinear finite element analyses now available imposes essentially no restrictions on direct evaluation of
these fracture parameters for a large variety of crack configurations, material properties and loading conditions, the much
higher level of required effort, particularly in 3-D applications, still underlies the need of simplified ] and CTOD estimation
techniques in routine defect assessments. A relatively straightforward procedure to evaluate J and CTOD in the elastic-plas-
tic and fully plastic regimes based upon the EPRI methodology [15,18] proves a viable and yet simple analytical tool in con-
ventional fracture analyses.

This section introduces the essential features of the theoretical framework needed to determine J and CTOD for circum-
ferentially cracked cylinders and pipes based upon fully plastic solutions for power hardening materials. The description that
follows draws heavily on the early work of Shih and Hutchinson [17], Kumar et al. [16], Anderson [5] and Kanninen and
Popelar [21] while, at the same time, providing the basis to develop a fully plastic analysis for a cracked body in which
the material is conveniently characterized by a power hardening stress-strain behavior. Attention is directed to estimation
solutions applicable to stationary cracks subjected to monotonically increasing loading (deformation). Subsequent develop-
ment focuses on a simpler extension of the J and CTOD evaluation procedure to circumferentially cracked cylinders and pipes
under bending load.

2.1. ] and CTOD estimation procedure for power hardening materials

Development of fully plastic solutions for ] and CTOD begins by considering an elastic-plastic power-hardening model to
describe the material’s stress—strain behavior in the form

§:£+a<i>n (1)

where ¢ is the true stress, & is the true (logarithmic) strain, g, defines the yield stress, most often assigned the value of the
0.2% proof stress, &,s = ays/E is the corresponding reference strain with E representing the (longitudinal) elastic modulus, o is
a dimensionless constant and n defines the strain hardening exponent. The previous Eq. (1) is also known as the Ramberg-
Osgood model [5,10,18] and is widely adopted for fitting uniaxial stress-strain tensile data.

Upon consideration of a fully plastic cracked body in which the elastic strains, &, are assumed to remain vanishingly small
compared to the plastic strains, &,, the stress-strain behavior defined by Eq. (1) reduces to a pure power law where
&, < (G /0ays)". Under such conditions and within distances sufficiently close to the crack tip, the general form of the asymp-
totic crack-tip stress fields well inside the plastic region is given by the HRR singularity in the form [5,6,21]

] 1/(n+1) .
Oijj = Oys (m) aii(n, @) (2)

where (r, ¢) are cylindrical coordinates centered at the crack tip. Here, I, is an integration constant that depends on n and
oii(r, @) is a dimensionless function of n and ¢. For the purpose of subsequent development, the above equation is conve-
niently solved for J in the form

RT  AN U
J= ~J’S4YS("”H) <_U> (3)
[03(n, @)] Oys
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We now consider Ilyushin’s theorem [6,21,22] which states that the fully plastic stresses simply scale with the (generalized)
applied load, P, such as o;; = g;(r, ¢, n)P where the quantity g; is a dimensionless function of spatial position and strain
hardening but it is independent of applied load. Noting that J « (c;)""" in the previous HRR solution, it follows that J scales
with P™!. Consequently, the fully plastic J given by Eq. (3) can be expressed as

P n+l1
J = assasbita/W. ) () @
where a is the crack size, W denotes the cracked component width, b = W — a defines the uncracked ligament, ¢ represents a
characteristic length for the cracked component and Py is the (generalized) limit load. In the above expression, hy is a dimen-
sionless factor dependent upon crack size, component geometry and strain hardening properties.

The previous solution for J is essentially applicable for fully plastic cracked configurations in which the elastic strains are
vanishingly small, particularly within the annular region surrounding the crack tip where Eq. (3) and the condition J o P"*!
hold true. A convenient approach to extend the J-evaluation procedure over the full range of elastic-plastic loading follows
from earlier work of Shih and Hutchinson [17] to yield an additive decomposition of J into elastic, J., and plastic, J,, compo-
nents given by

J=Je(a,n=1)+J,(a,n) (5)

The first term on the right side of Eq. (5) implies that J, « P* which enables defining J. by the energy release rate for a linear
elastic cracked body under Mode I deformation in the standard form

K?
Je=F (6)

where K; denotes the (Mode I) elastic stress intensity factor for the cracked configuration and E' = E/(1 — v?) with v repre-
senting the Poisson’s ratio. To maintain consistency with the above procedure, the plastic component of the J-integral is di-
rectly derived from the use of Eq. (4) but with J replaced by J,.

The previous framework also applies when the CTOD is adopted to characterize the crack-tip driving force. Following the
earlier analysis for the J-integral and using the connection between J and the crack-tip opening displacement () [4,5] given

by

_dd
o= (7)

in which d,, is a dimensionless constant, a formally similar expression to Eq. (5) is employed to yield

3 =0de+ 0p (8)

where the elastic component, &, is given by
_ K
maysE

e

in which m is a dimensionless constant and the plastic component, d,, is expressed as
2 n+1
Op = agysbhy(a/W, 4, n) <P—> (10)
0
with h; defining a dimensionless factor dependent upon crack size, component geometry and strain hardening properties. It
follows from the previous relationship between J and CTOD given by Eq. (7) that h, = d,h;.

2.2. Extension to circumferentially cracked pipes

To introduce an estimation procedure of ] and CTOD for a cylinder or pipe having a circumferential surface crack based
upon the previous fully-plastic solutions, consider the crack configuration subjected to bend loading illustrated in Fig. 1. The
above methodology can be extended in straightforward manner to define J, and 4, for this crack geometry by the following
expressions

n+1
J, = a&ys0ysbhy(a/t, De/t, 0,n) (MM> (11)
0

and

n+1
dp = a&ysbhy(a/t, De/t, 0,n) (MM> (12)
0
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VA

Fig. 1. Pipe configuration and defect geometry adopted in the numerical analyses.

where D, is the pipe (cylinder) outer diameter, t is the wall thickness, M denotes the applied bending moment and M, defines
the limit bending moment. Here, the uncracked ligament is now given by b =t — a and the surface crack length is described
by the angle 0 (see Fig. 1) as [10,19]

e

0= 2D, (13)
where c is the circumferential crack half-length.
In the above expressions, the limit bending moment, My, is conventionally given by [10,19]
Mo = 26,sR%£(2 sin § — % sin0) (14)

in which R, denotes the mean radius (R, = (R. + R;)/2 where R, and R; are the external and internal radius) and parameter

is defined as
-6

The limit solution for the bending moment given by Eq. (14) is applicable in the range (0 + 8) < 7 [10,19]. Other expressions
for the limit bending moment could also be adopted to reflect more accurately the actual plastic collapse mechanism of the
remaining crack ligament (see e.g. Chiodo and Ruggieri [26]). However, since My in Egs. (11) and (12) can be viewed just as a
normalizing load which would affect only the values of factors h; and h; not the values of J, and §,, this option was not pur-
sued in the present work and should be addressed in future investigations.

Finally, the elastic terms of ] and CTOD, J, and J,, are calculated by using Egs. (6) and (9) coupled with a convenient form
for the elastic stress intensity factor, K;. For a circumferential surface crack in a pipe subjected to a bending moment, an im-
proved expression for parameter K; is given by [10]

Ki = 04Gs, /g (16)

where o}, is the (global or net-section) bending stress about the x-axis (see Fig. 1) expressed as
4MR,

T

F=3

Op=——F— 1 (17)
m(Re — RY)
and the flaw shape parameter, Qs, is defined as
165
Qs:1+1.464(g> , a<c (18)

In the above expression (16), Gs is the influence coefficient corresponding to a circumferential semi-elliptical surface crack in
a cylinder subjected to a (pure) net-section bending as given in Appendix C of API 579 [10].

Evaluation of parameters J and CTOD based upon the procedure outlined above requires specification of factors h; and h,
once all other quantities entering directly into the calculation of J,(d.) and J,(6,) are defined. Current available solutions
(such as the EPRI methodology [16,19]) provide values for factor h; which are only applicable to few selected crack
geometries, including circumferentially cracked pipes under axial load. The relatively limited analyses and data available
to evaluate J and CTOD for a broad range of crack geometries and material properties underscores the need for improved
and accurate descriptions of factors h; and h, for circumferential surface cracks in pipes under bending. Section 4 explores
detailed numerical and validation analyses which lead to a comprehensive body of fully-plastic solutions for J and CTOD.
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3. Computational procedures and finite element models
3.1. Numerical models of circumferentially cracked pipes

Nonlinear 3-D finite element analyses are conducted on circumferentially cracked pipes with external surface flaws sub-
jected to bending. The analyzed pipe models have wall thickness t=20.6 mm with different outside diameters D, =
206 mm (D./t = 10),D, = 309mm (D./t = 15) and D, = 412mm (D,./t = 20). These geometries typify current trends in high
pressure, high strength pipelines, including submarine pipelines and risers. The analysis matrix considers external surface
flaws with varying crack depth (a) and crack length (2c) as defined by a/t=0.1-0.5 with increments of 0.05 and 0/
7 =0.04, 0.08,0.12, 0.16 and 0.20 (1.7 < {c/a} < 82.5 - see Eq. (13)). Fig. 1 shows the pipe configuration and defect geometry
adopted in the analyses. Overall, the computations comprised 135 numerical models and 405 loading cases considering the
three hardening levels adopted in the analyses (refer to Section 3.2 next).

Fig. 2a and b shows the finite element model constructed for the pipe with D./t = 10,a/t = 0.5 and 0/ = 0.12. A con-
ventional mesh configuration having a focused ring of elements surrounding the crack front is used with a small key-hole
geometry (blunt tip) at the crack tip to enhance numerical convergence and to accommodate the large plastic strains that
develop with increased levels of deformation. The small initial root radius at the crack tip is po =5 pm (0.005 mm). A typical
half-symmetric model for the cracked pipes has approximately 15,000 elements and 18,000 nodes with appropriate con-
straints imposed on nodes defining the symmetry planes. The crack front is described by 15 (circumferential) layers defined
over the crack half-length (c); the thickest layer is defined at the deepest point of the crack with thinner layers defined near
the free surface to accommodate the strong gradient in the stress distribution along the crack front. The half-symmetric fi-
nite element models for the pipe specimens are loaded by a four-point bending scheme so that a constant bending moment
with zero shear forces is imposed on the crack plane and along the pipe half-length at distances about three times the pipe
diameter. Exploratory numerical analyses demonstrate that such loading scheme and associated boundary conditions,
including the adopted pipe length, does not influence the near-tip stress and strain fields nor does it affect the ] and CTOD
values extracted from the finite element computations. Very similar finite element models and mesh details are employed
for other cracked pipe configurations.

3-D finite element analyses are also conducted on circumferentially cracked pipes subjected to reeling. Fig. 3 illustrates
the adopted scheme for the numerical simulation of reeling with the reel drum being modeled by a rigid surface with
diameter @, = 15,000 mm; in the figure, A; represents the load line displacement (LLD). The pipe analyzed has an outside
diameter, D, =344.5 mm (13.5 in.), thickness, t = 20.6 mm (D,/t ~ 16.7) and external, circumferential surface flaws with
length 2c =100 mm (/7 =0.073) and different crack depth (a) over pipe wall thickness (t) ratios: a/t=0.1, 0.2, 0.3 and
0.4 (see Fig. 1). These geometries typify current trends in marine risers installed by the reeling process. Finite element
models essentially similar as described above (but with a larger pipe length to accommodate pipe reeling over the drum)
are employed for the reeling simulation. The half-symmetric models for these analyses have ~55,000 8-node, 3-D elements
(~67,000 nodes) with appropriate constraints imposed on nodes defining the longitudinal symmetry plane.

(@) (b)

7 X

Fig. 2. (a) 3-D finite element model employed for the pipe configuration with D,/t = 10, a/t = 0.5 and 0/n = 0.12 and (b) near-tip model and meshing details.
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Fig. 3. Adopted scheme for the numerical simulation of pipe reeling.
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Fig. 4. (a) Uniaxial true stress-logarithmic strain response of materials employed in the analyses using a power-hardening model and (b) uniaxial true
stress-logarithmic strain response for an API X60 steel having different hardening behavior after yielding.

3.2. Material models

The elastic—plastic constitutive model employed in all analyses reported here follows a J, flow theory with conventional
Mises plasticity in small geometry change (SGC) setting. The numerical solutions employ a simple power-hardening model
to characterize the uniaxial true stress () vs. logarithmic strain (€) in the form

g _
=_ 8Sgys ’

= = —\n
£ . £ (1> E> &y (19)
&s Oys &ys Oys
where g, and ¢, are the (yield) stress and strain, « is a dimensionless constant and n is the strain hardening exponent. The
finite element analyses consider material flow properties covering typical structural, pressure vessel and pipeline grade
steels with E =206 GPa, v=0.3 and o =1: n=5 and E/oys = 800 (high hardening material), n =10 and E/o,, = 500 (moderate
hardening material), n =20 and E/oy, =300 (low hardening material). These ranges of properties also reflect the upward
trend in yield stress with the increase in strain hardening exponent, n, characteristic of ferritic structural steels, including
pipeline steels. The stress—strain response for these materials is shown in Fig. 4a.
The evaluation procedure for factors h; and h, described in Section 4.2 requires specification of the ultimate tensile
strength, o, to determine the level of | (and CTOD) at which the limit bending moment corresponding to instability of the
crack ligament for the pipe is attained. For each material property set, g, is estimated using the following relationship [5]

Guts = Gy |:(500/n)1/n:| . @0)

exp(1/n)
Section 5 addresses a sensitivity analysis to assess the robustness of the R-O power-law fit given by previous Eq. (1) in
characterizing the crack-tip driving force as measured by J (and, equivalently, CTOD). Section 6 describes numerical analyses
for circumferentially cracked pipes subjected to reeling. The material adopted in these studies is a typical API 5L Grade X60
pipeline steel [36] but with two different true stress vs. true strain behavior after yielding as displayed in Fig. 4b. The solid
line represents a pipeline steel with continuous hardening behavior having 483 MPa yield stress (a,,) at room temperature
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(20 °C) and relatively low hardening properties (o,:/0ys ~ 1.24) tested by Silva [27]. The stress-strain data for this material
was obtained using rectangular tensile specimens (ASTM A370 [37]) with 13 mm thickness (average of three tensile tests).
Here, a conventional fitting of the true stress-true strain data to the R-O model provides n = 12 with o = 1. The dashed line
describes the true stress vs. true strain response for a pipeline steel displaying a Liiders plateau with yield stress,
oys = 534 MPa, also at room temperature given in Ref. [28]. The R-O power-law fitting for this data set using Eq. (1) gives
o« =9.5 and n = 6.6. Other mechanical properties for the material include Young’s modulus, E = 210 GPa and Poisson’s ratio,
v=0.3.

3.3. Computational procedures

The finite element code WARP3D [23] provides the numerical solutions for the 3-D analyses reported here. The code
solves the equilibrium equations at each iteration using a very efficient, sparse matrix solver highly tuned for Unix and
PC based architectures and implements the so-called B formulation [24] to preclude mesh lock-ups that arise as the defor-
mation progresses into fully plastic, incompressible modes. The sparse solver significantly reduces both memory and CPU
time required for solution of the linearized equations compared to conventional direct solvers.

The local value of the mechanical energy release rate at a point s along the crack front is given by [25]

]:/F {Wsnl - aijg—;;nj ar (21)
where I" denotes a contour defined in a plane normal to the front on the undeformed configuration beginning at the bottom
crack face and ending on the top face, n; is the outward normal to I", W; denotes the stress-work density per unit of unde-
formed volume, ¢;; and u; are Cartesian components of stress and displacement in the crack front coordinate system. The
finite element computations employ a domain integral procedure [25] for numerical evaluation of Eq. (21) to provide point-
wise values of J across the crack front at each loading level.

For the 3-D analyses of the circumferentially surface cracked pipes, the intensity of near-tip deformation is quantified by
the pointwise value of J evaluated at the point of maximum crack depth (see Figs. 1 and 2). Because the near-tip stress tri-
axiality is maintained over a large portion of the crack front [38] at the deepest point region and at distances sufficiently far
from the traction-free (external) face of the pipe, such J-value adequately characterizes the level of crack-tip loading level
needed in the estimation procedure for factor h; conducted next. Moreover, because of the relatively thin thickness of the
analyzed pipes, additional care was taken to avoid having J contours spreading towards the inner pipe surface which would
thereby affect the path independence. In evaluating the path independent J-values for all numerical analyses, contours lying
far from the crack tip but with a large enough size such as not to interact with the inner pipe surface were chosen. To deter-
mine the dimensionless function h,, evaluation of the numerical values of CTOD follows the 90° intercept procedure [5] to
the deformed crack flanks. To maintain consistency with the previous characterization of the intensity of near-tip deforma-
tion, the CTOD is also evaluated at the point of maximum crack depth. Our previous numerical experience reveals that such
numerical technique to extract the CTOD in the analyzed crack configurations provides numerical values that differ by less
than 10% of the displacement at the node of the initial crack tip while, at the same time, avoiding the evaluation of nodal
displacements over a severely deformed region.

The numerical simulation of the reeling process involves the contact interaction between the pipe specimen and the reel
drum represented by a rigid cylinder (see Fig. 3). WARP3D [23] uses a simple penalty method to enforce displacement con-
straints in the solution of the finite element model which creates springs at the contact points. The spring stiffness corre-
sponds to the penalty parameter, while the amount of remaining penetration corresponds to the error in the enforcement
of the constraint. The numerical procedure adds each spring stiffness into the corresponding element stiffness matrices in-
stead of directly into the global stiffness matrix.

4. J and CTOD estimation based on the h-factors

The following sections provide an extensive set of results derived from the 3-D numerical analyses conducted on circum-
ferentially cracked pipes with varying crack configuration under bending. These results include factors h; and h, needed to
determine J and CTOD for a given measure of applied (macroscopic) loading as characterized by the bending moment in the
present context. The analyses also explore key issues of the evaluation procedure for factor h; (the procedure to evaluate
factor h, is essentially similar) which have a direct bearing on the robustness of the fully plastic solutions to estimate J
and CTOD for circumferentially cracked pipes. These issues include the sensitivity of factor h; (and, equivalently, factor
h,) on crack-tip loading coupled with geometry and strain hardening effects.

4.1. Dependence of factor h; on crack-tip loading

The present framework to support the use of the dimensionless functions h; in the estimation procedure for J defined by
Eq. (11) holds true as long as the proportional relationship between the applied loading (M) and J, given by previous Eq. (11)
is preserved with increased levels of crack-tip loading. Consequently, the key question to resolve with the J evaluation
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procedure for a circumferentially cracked pipe concerns the sensitivity of the condition J, o (M/Mg)""! on loading level
changes for a given crack configuration.

Figs. 5a and b and 6a and b provide the variation of log J, with log (M/My) for selected pipe geometries using crack con-
figurations and material properties with widely different behavior in crack tip constraint and strain hardening. These anal-
yses cover pipe specimens with D/t = 10 and 20, a/t = 0.2 and 0.5, 0/ = 0.04 and 0.20 with two hardening levels, n=5 and
20. In these plots, a reference line with slope n + 1 is provided to aid in assessing the constant ratio (proportionality) between
log J, and log (M/Mp). Further, the particular point given by log (M/My) = 0 (which corresponds to M = M) has a clear inter-
pretation as it corresponds to the attainment of the limit bending moment (as defined by Eq. (14)) for each analyzed
configuration.

Consider first the results for the pipe specimens with D/t = 10 and n = 5 displayed in Fig. 5a and b. Each curve for a spe-
cific a/t and 0/rn-ratio follows very closely the corresponding reference line which defines the constant ratio between log J,
and log (M/M,), particularly for applied bending moments exceeding the limit bending moment. Here, after the well con-
tained, near-tip elastic-plastic stress fields evolve into a fully plastic condition (in which the crack ligament has reached
yielding), the variation of log J, with log (M/M,) essentially falls onto the reference line thereby translating into a constant
ratio. Consider next the results for the pipe specimens with D/t = 20 and n = 20 displayed in Fig. 6a and b. While a relatively
linear dependence of log J, on log (M/Mp) is still preserved for the shallow (a/t = 0.2) and deeply (a/t = 0.5) cracked pipe spec-
imens with 0/x = 0.04 at values of the applied bending moment corresponding to log(M/My) > 0.03 ~ 0.05, the variation of
log J, with log (M/M,) for the 0/ = 0.20 configuration deviates significantly from the proportionality reference line particu-
larly for the pipe specimen with a/t = 0.5. This behavior exhibited by the n =20 material contrasts rather sharply with the
features observed for the n =5 material and poses additional difficulties in the procedure to extract factor h; as discussed
next. Although not shown here in interest of space, essentially similar trends are also observed for the dependence of factor
h, with CTOD for the analyzed pipe configurations.

4.2. Evaluation procedure of factor h; and hy

Evaluation of factor h; and h; for the analyzed crack configurations follows from solving Eqs. (11) and (12) upon compu-
tation of the plastic component of the J-integral, J,, and CTOD, d,, with the applied bending moment, M, for a given crack size,
component geometry and strain hardening exponent, n. Based upon the previous results and to develop a more consistent
scheme to determine the dimensionless function h; (the process to evaluate factor h; is analogous), it proves convenient to
rewrite Eq. (11) into the form
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logJp _ O 0/m= 0.04 7 logJp _ O 0/z= 0.04 7
3'05_ O 6/x= 0.20 E 3.0 E O o/z= 020 E
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Fig. 5. Variation of the J-integral with increased normalized bending moment for the pipe configuration with D/t = 10, n = 5 material and varying crack
configuration.



M.S.G. Chiodo, C. Ruggieri/Engineering Fracture Mechanics 77 (2010) 415-436 425

4.0¢ E 4.0
log J, _ O 6/n= 0.04 7 log Jp _ E
3'05 O 6/z= 020 E 3.0 3 E
E 5 E E O 60/n=0.04
F _g-£ 7 E E
2.0 -552:82676° 3 20F O 6/x= 020
1_05_ a/t=0.2 , 1.0 _ ) a/t=0.5 ]
E n=20 j E De/t=20 =20 ]
0E NI B B B 0 3 N N S S
-0.10 -0.05 0 0.05 0.10 -0.10 -0.05 0 0.05 0.10
log(M/M,) log(M /M)
(@) (b)
jp
j100"” 3200_‘ T
P 80:— O 0/x= 004 ] P 160 F 0 6/n- 004 D,/t=20
O 6/x= 0.20 O 6/zx= 0.20
60 [ ] 100 _meET A
40 :‘ tgp=hl De/t=20 N 80 :_ ,,59555555559‘
[ a/t =0.2 ’===:-.==c=°' a/t =05
20 n=20 ] 40 3 =hl =20
or-— 1 ] 0 PIR (R ST NS SR S NS S S S
0 20 40 60 80 100 0 2 4 6 8 10
n+1 n+1
(M/M,) (M/M,)
(c) (d)

Fig. 6. Variation of the J-integral with increased normalized bending moment for the pipe configuration with D./t = 20, n = 20 material and varying crack
configuration.

_ I,

J= 0&ysTysh

n+1
= hy(a/t,De/t,0,n) (Mﬂ()) (22)

so that falctor h; can be obtained by simply determining the slope of a least square fit to the (linear) evolution of J, with
(M/Mp)™".

Figs. 5c and d and 6¢ and d illustrates the procedure to determine factor h; for the circumferentially cracked pipes ana-
lyzed in the previous section. First, direct attention to the results for the pipe specimens with D./t = 10 and high strain hard-
ening (n=5) material displayed in Fig. 5c and d. For all analyzed cases covering widely different crack geometries as
characterized by the a/t and 6/n-ratio, a linear relationship between J, and (M /Mo)"! clearly holds true for the entire range
of load level. Here, the slope of the straight line derived from the best fit to the computed values unmistakably defines factor
h; for a given crack configuration. Consider now the results for the pipe specimens with D,/t =20 and low strain hardening
(n=20) material displayed in Fig. 6¢c and d. Because the variation of log J, with log (M/Mo) at load levels M < M, (log (M/
Mp) < 0) deviates significantly from a linear function (see Fig. 6a and b), the early portion of the two sets of curves potentially
display dramatic changes in slope thereby complicating the assessment of a “correct” value for factor h; by a best fit proce-
dure. Neglecting this short transient region, which corresponds to applied load levels (here characterized by the bending mo-
ment) that are not relevant in describing fully plastic stress states, may eliminate this problem for the short crack pipe (a/
t = 0.2) but not for the full range of crack geometries for deeply cracked pipes (a/t > 0.3—0.4). Indeed, while it is still possible
to define factor h; for the deeply cracked pipe within reasonable accuracy for 0/m = 0.04, a representative value of h; for 0/
7 = 0.20 remains undefined. Moreover, for very large deformation levels near the plastic collapse load of the cracked pipe,
failure is generally governed by the flow properties of the material, particularly its tensile stress (o), not by the fracture
toughness. Chiodo and Ruggieri [26] discuss this issue in detail and provide limit load solutions for axially cracked pipes
which have a direct bearing on the discussion pursued here. Consequently, defining factor h; as the slope of the (best fit)
straight line corresponding to the late part of the J, vs. (M/M,)""" curve for some combinations of crack configurations
and material properties remains elusive.

To address this issue and to provide a simpler evaluation procedure for factor h; (and, equivalently, factor h,) applicable
to a wide range of crack configurations and material properties, the present investigation adopts the following scheme:

(1) Determine the J-value corresponding to the limit bending moment evaluated from Eq. (14) using the material’s yield
stress, ays. Let J, denote this crack-tip loading level.



426 M.S.G. Chiodo, C. Ruggieri/Engineering Fracture Mechanics 77 (2010) 415-436

(2) Determine the J-value corresponding to the limit bending moment evaluated from Eq. (14) but with the yield stress,
oys, replaced by the (ultimate) tensile stress, o, Let J; denote this crack-tip loading level.

(3) For the J-values ranging from J, to J;, determine the corresponding plastic component, Jp,.

(4) Plot ], vs. (M/M,)"" for the J-values ranging from J, to J; and evaluate factor h; as the slope of the best fit straight line
passing through the axis origin for the selected range of crack-tip loading.

The above strategy maintains consistency with the linear relationship condition between J, and (M /Mo)™"! while avoiding
considering unrealistically high levels of crack-tip loading (as characterized by J-values larger than J;) which would other-
wise enter into the linear fitting scheme. This scheme also applies when the CTOD is employed to characterize the crack-
tip driving force; here, the corresponding quantities entering the process are &y, d,, 3, and &, However, the evaluation pro-
cedure for factor hy (and factor h,) is applicable only to the extent that a sufficiently valid range of J-values (CTOD-values)
follow a proportional relationship with the applied loading (M). The numerical results reported subsequently reveal a few
cases for which the evaluation of factor h; (and factor h,) becomes unacceptably inaccurate.

4.3. Factors h; for circumferential surface cracks in pipes under bending

Figs. 7-9 provide the h;-factors for the circumferentially cracked pipes with varying geometries and material properties
derived from the J estimation procedure previously outlined. For all sets of analyses, the results reveal that factor h; displays
arather strong sensitivity to crack geometry and strain hardening behavior. To facilitate interpretation of these results, direct
first attention to a fixed D,/t-ratio such as the plots for D,/t = 10 displayed in Fig. 7. For shallow crack sizes (a/t < 0.2—0.3),
the hi-values are fairly insensitive to crack length (defined by parameter 0/7) for all hardening levels; here, the evolution of
factor h; with crack depth essentially falls onto a single curve particularly for a/t < 0.2. In contrast, the h,-factors for deeply
cracked pipes (aft>0.4) depend rather strongly on 0/m for all hardening levels, particularly for shorter crack lengths
(0/m < 0.12). Very similar trends are displayed by other D./t-ratios - see Figs. 8 and 9.

Further, we note that the evolution of factor h; with /7 for a fixed a/t-ratio displays a somewhat mixed behavior as it
increases and then slightly decreases with increased 0/m-values. Such development is particularly prominent in the deep
crack range (a/t > 0.4) for all hardening levels. Consider, for example, the h;-values for n=10 and a/t=0.5 displayed in
Fig. 7b; here, factor h; changes rapidly from 0/ =0.04 to 0/ =0.08 and then exhibits a slight drop from the peak level
attained at 0/m = 0.12 with increased crack length. We argue that these trends in variation of factor h; are associated with
the synergistic combination of crack depth (which defines the crack ligament size) and circumferential crack length. Such
synergism potentially impacts the evolution of the highly-strained plastic zones along the crack ligament with increased
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Fig. 7. Variation of factor h; with increased a/t-ratio for the pipe configuration with D,/t = 10 and varying circumferential crack length and hardening
properties.
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Table 1
Coefficients for the polynomial fitting of factor h; given by Eq. (23) for D/t = 10.
D/t n 0|m &o & & &3
10 5 0.04 0.0843 4.6422 17.8277 —13.4842
0.08 0.5825 —3.3878 55.2778 —36.1407
0.12 0.7313 -5.6312 62.2795 —32.1912
0.16 0.8515 —7.2849 65.8250 —33.4485
0.20 0.6612 —4.6699 52.5089 —20.1966
10 0.04 0.1164 43912 21.2600 —17.0781
0.08 0.7107 —5.7907 72.0217 —64.4680
0.12 0.8698 -8.6330 83.1300 —72.4532
0.16 0.9889 -10.2750 85.1026 —74.5791
0.20 0.6988 —5.9989 61.9058 —49.0822
20 0.04 0.1271 4.4459 20.7199 —18.6707
0.08 0.3441 —0.4818 50.1959 —49.2222
0.12% 0.3936 -1.7114 51.8556 —45.3296
0.16° 0.6379 —5.3930 59.8801 —49.3589
0.20° 0.9254 —10.1875 74.3664 —64.2550

¢ Note: valid in the range a/t < 0.25.

Table 2
Coefficients for the polynomial fitting of factor h; given by Eq. (23) for D/t = 15.
D[t n 0l o & & &
15 5 0.04 0.5223 —2.2280 55.3610 —38.7590
0.08 1.1077 —11.0849 91.1526 —43.3009
0.12 1.2639 —13.1859 94.3227 —30.8805
0.16 1.2108 -12.2124 86.0012 —21.0857
0.20 1.2108 -12.1170 82.1175 —23.5905
10 0.04 0.7285 —5.8292 79.4549 —67.9468
0.08 1.4662 —18.2720 139.5870 —113.4380
0.12 1.6937 —21.8850 150.0590 —115.5130
0.16 1.5520 —19.4931 132.5110 —95.9746
0.20 1.4883 —17.9780 117.5820 —83.8422
20 0.04 0.7249 —6.4982 88.3854 —84.1349
0.08 0.6796 -8.1227 107.3920 -90.2424
0.12¢ 0.7269 -8.7736 99.7509 —62.0301
0.16% 1.2752 —16.7803 120.3940 —74.7073
0.20° 2.0061 —27.2343 151.7440 —104.4900

¢ Note: valid in the range a/t < 0.25.

crack-tip loading thereby affecting the proportional relationship between J, and (M/M,)""" upon which h; is defined - see
Figs. 5 and 6.

The results for the h;-values corresponding to the low hardening material (n = 20) shown in the plots of Figs. 7-9 also
deserve attention. As we have previously discussed, factor h; is evaluated using a range of J-values in which they follow a
proportional relationship with the applied bending moment, M. While this condition is met for the full range of a/t-values
and 0/m = 0.04, 0.08 for all D./t-ratios, the h; evaluation procedure for some combinations of crack depth (a/t) and crack
length (0/7) for the n =20 material fails to provide sufficiently accurate values. For a/t-ratios up through ~0.25, however,
a full set of hy-factors for the low hardening material and varying D./t-ratios is readily defined.

Using now the plots displayed in Figs. 7-9 for guidance and to provide a simpler manipulation of the previous results, we
construct the functional dependence of factor h; and crack depth for a given 0/n-ratio in the form

hi(a/t) = & + & (a/t) + &(a/t)® + &(a/t)’ (23)

where it is understood that a cubic polynomial fitting is employed. Tables 1-3 provide the polynomial coefficients of Eq. (23)
derived from a standard least square fitting using the h; data set for each D./t and 0/r. For all D,/t-ratios with n =20 (low
hardening material), the functional dependence between factor h; and crack depth for 0/ > 0.12 given by Eq. (23) and
the corresponding polynomial coefficients is strictly valid for a/t < 0.25 .

4.4. Factors h; for circumferential surface cracks in pipes under bending

Figs. 10-12 present the h,-factors for the circumferentially cracked pipes with varying geometries and material properties
which follow from the CTOD estimation procedure described in Section 4.2. As already noted, the connection of J with CTOD
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Table 3
Coefficients for the polynomial fitting of factor h; given by Eq. (23) for D/t = 20.
D/t n 0|m &o & & &3
20 5 0.04 0.7804 —6.2095 74.4567 —44.8433
0.08 1.6133 —18.7368 123.2110 —58.7412
0.12 1.5054 —16.5979 106.4300 -21.3341
0.16 1.5593 —17.0274 101.9440 —16.5603
0.20 1.2791 —12.8952 82.3299 —-4.9121
10 0.04 1.1411 —12.5254 114.3470 —92.8150
0.08 2.3246 —32.3329 205.6480 —170.6350
0.12 22216 —30.7086 190.8510 —139.3350
0.16 2.3225 —31.3947 181.8030 —128.1330
0.20 1.6794 —21.2747 131.0190 —77.5143
20 0.04 0.9983 -11.7835 122.3060 —108.3160
0.08 1.4206 -21.4716 176.6020 —149.5850
0.12° 1.3616 —20.3624 156.4870 —97.4329
0.16* 2.6916 —39.0150 214.3200 —146.6190
0.20° 2.6736 —37.9678 193.0660 —108.3540

# Note: valid in the range a/t < 0.25.
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Fig. 10. Variation of factor h, with increased a/t-ratio for the pipe configuration with D./t = 10 and varying circumferential crack length and hardening
properties.

given by Eq. (7) implies a linear relationship between factor h, and h; such that h; = d,h,. Consequently, much of the features
and conclusions arising from the preceding results remain essentially similar for the h, results. Indeed, the trends are clear as
factor h; is fairly independent of crack length (defined by parameter 6/x) for shallower crack sizes (a/t < 0.2—0.3) but de-
pends more sensitively on 0/n for deeper crack sizes (a/t > 0.4). Such trends are nearly the same for all hardening levels and
D./t-ratios adopted in the analyses.

The behavior exhibited by the hy-values for the low hardening material (n = 20) displayed in the plots of Figs. 10-12 is
also consistent with the previous observations about the loss of proportionality between the crack-tip driving force (here
characterized by the CTOD) and the applied bending moment, M, for some combinations of crack depth (a/t) and crack length
(0m). Again, a full set of h,-factors for the low hardening material and varying D./t-ratios is readily defined only for a/t-ratios
up through ~0.25.
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Fig. 11. Variation of factor h, with increased a/t-ratio for the pipe configuration with D/t = 15 and varying circumferential crack length and hardening
properties.
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Fig. 12. Variation of factor h, with increased a/t-ratio for the pipe configuration with D,/t =20 and varying circumferential crack length and hardening
properties.
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Table 4
Coefficients for the polynomial fitting of factor h, given by Eq. (24) for D/t = 10.
D[t n 0|m &o & & &3
10 5 0.04 0.0354 1.4033 5.4291 —2.7044
0.08 0.1667 —0.7045 15.3951 —7.2653
0.12 0.1934 -1.1052 16.1908 —4.1226
0.16 0.2191 -1.4169 16.2839 —3.1744
0.20 0.1770 —0.8440 13.1158 —0.3502
10 0.04 0.0608 2.8476 9.1343 —3.4923
0.08 0.3782 —2.5864 36.3163 —28.3582
0.12 0.4899 -4.4918 43.5806 —33.8202
0.16 0.5295 —5.0153 43.0069 —32.9966
0.20 0.4297 —3.5362 33.9026 —23.5226
20 0.04 0.1243 3.3741 12.2899 —-6.1320
0.08 0.3301 —0.9833 37.0877 —32.6909
0.12% 0.4404 -3.0139 43.1056 —35.5939
0.16* 0.5508 —4.8088 45.8284 —35.2813
0.20° 0.8679 -9.9315 63.7080 —55.5670

# Note: valid in the range a/t < 0.25.

Table 5
Coefficients for the polynomial fitting of of factor h, given by Eq. (24) for D/t = 15.
D[t n o[m o &1 & &
15 5 0.04 0.1571 —0.4836 16.2303 —8.8411
0.08 03377 -3.1063 25.9833 —6.8249
0.12 0.3356 —2.9458 23.2126 2.2170
0.16 0.3381 —2.9094 21.5826 4.0762
0.20 03011 -2.3603 18.4601 4.9386
10 0.04 0.3929 —2.6395 40.6976 —29.6426
0.08 0.8111 -9.5261 72.8777 -51.2798
0.12 0.9035 -10.9330 75.5084 —47.5897
0.16 0.9281 —11.0804 71.3802 —43.0552
0.20 0.7636 —8.4305 56.1487 —28.9347
20 0.04 0.5804 —4.6881 61.6135 —53.1298
0.08 0.6952 —8.0026 83.2217 —65.7404
0.12* 0.7389 —8.7522 79.0689 —47.0087
0.16% 1.3412 —17.5454 106.3570 —70.6527
0.20* 1.6490 —22.0627 117.7130 —80.2001

2 Note: valid in the range a/t < 0.25.

To provide a simpler manipulation of the results displayed in Figs. 10-12, a functional dependence of factor h, and crack
depth for a given 0/n-ratio is expressed in the form

ha(a/t) = Lo+ Ci(a/t) + G (a/)? + G(a/t) (24)

where a cubic polynomial fitting is utilized. Tables 4-6 provide the polynomial coefficients of Eq. (24) resulting from a stan-
dard least square fitting to the h, data set for each D/t and 0/n. As noted previously, the functional dependence between
factor h, and crack depth for /7 > 0.12 given by Eq. (24) and the corresponding polynomial coefficients is strictly valid
for a/t < 0.25 in the case of all D./t-ratios with n =20 (low hardening material).

We now proceed to demonstrate that the relationship between | and CTOD given by previous Eq. (7) holds true for the
crack configurations under analysis such that h, = d,h;. Fig. 13 shows d,,-values for key selected crack configurations having
varying a/t and 6/n-ratios with widely different hardening behavior (n = 5 and 20); these results are derived directly from the
analyses previously presented to determine factors h; and h,. The trends are clear. The resulting d,-values are a strong func-
tion of the material’s strain hardening (as characterized by the hardening exponent, n) and essentially independent of crack
geometry and pipe diameter. Here, d, ~ 0.32 for the high hardening material (n=5) and d,, ~ 0.75 for the low hardening
material (n = 20). For comparison, these constant (average) values are shown in the plots as dashed lines. Small departures
from the constant line corresponding to d, ~ 0.75 for the n =20 material can be observed which is most likely associated
with the fully plastic behavior and the relative difficulty in assessing very accurate values of factors h; and h; for this mate-
rial (see Sections 4.1 and 4.2). However, these results fully confirm the applicability of the equivalence between J and CTOD
for the analyzed crack configurations.
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Table 6
Coefficients for the polynomial fitting of of factor h, given by Eq. (24) for D/t = 20.
D[t n 0|m o & & &3
20 5 0.04 0.2325 —1.6216 21.6025 —9.2529
0.08 0.4366 —4.5415 31.5916 —4.8595
0.12 0.3857 —3.5337 243112 10.2439
0.16 0.3287 —2.6519 18.9737 15.8038
0.20 0.3276 —2.6404 18.3557 11.9382
10 0.04 0.6073 -6.1169 58.9117 —40.9894
0.08 1.2300 —16.2302 103.4560 —72.0608
0.12 1.2549 —16.3857 98.3200 —56.3578
0.16 1.1391 —14.3309 83.5881 —39.3918
0.20 0.9393 —11.0280 65.4325 —24.7345
20 0.04 0.8002 —8.8741 87.5153 —71.7065
0.08 1.2524 —17.6992 131.8520 —103.7140
0.12° 1.5058 —21.2431 134.6470 —85.3270
0.16° 2.2105 —31.1656 162.8490 —-105.9320
0.20° 2.4676 —34.4221 165.0030 —100.5140
¢ Note: valid in the range a/t < 0.25.
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Fig. 13. Effect of strain hardening and crack configuration on the relationship between J and CTOD as characterized by parameter d,,.

5. Effect of Ramberg-0sgood fit on the J estimation scheme

The fully plastic solution for the J-integral (CTOD) discussed thus far relies on an elastic-plastic power-hardening model
based upon the R-0 form given by previous Eq. (1) to characterize the material’s stress—strain behavior. In related work to

estimate J and CTOD in cracked structural components, Kim et al. [29-31] and Chattopadhyay [32], and earlier Zahoor [33],

have raised some concern on the potential inability of the R-O model to describe the stress-strain response in the full strain

range which gives rise to rather inaccurate estimates of crack driving forces. Experimental trends in some specific materials,
such as structural steels exhibiting Liiders bands, appear to support these observations as the power-law fit implied by the
R-0 model does not necessarily provide a good description of the material’s stress—strain relation, particularly at low strain
levels corresponding to the yield plateau. However, these studies show no clear trends as their J and CTOD predictions are

rather strongly dependent on the stress—strain data set and on the strain range upon which the R-O fit is conducted. It is
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Fig. 14. ] vs. normalized bending moment for the pipe configuration with D./t = 10, a/t = 0.2 and 0.5, 6/ = 0.04 and continuous hardening material.
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Fig. 15. J vs. normalized bending moment for the pipe configuration with D/t = 10, a/t = 0.2 and 0.5, 6/n = 0.04 and material having yield plateau.

beyond the scope of the present work to perform a detailed sensitivity analysis of the effect of R-O fit on the proposed J
(CTOD) estimation scheme. This section examines the potential deviations in predictions of crack driving forces, as charac-
terized by J, for key cracked configurations when a material’s stress-strain response exhibiting a significant amount of Liider
strains is approximated by a R-O power-law fit.

Figs. 14 and 15 show the evolution of the J-integral with normalized bending moment, M/M,, for circumferentially
cracked pipes with D/t = 10, a/t = 0.2 and 0.5, and 0/n = 0.04. The material adopted in these analyses is a typical API 5L Grade
X60 with rather different true stress vs. true strain response in the elastic to fully plastic transition region as displayed in
Fig. 4b. In that plot, the solid line represents a pipeline steel with continuous strain hardening behavior [27] whereas the
dashed line describes the stress—strain response for a pipeline steel displaying a Liiders plateau given in Ref. [28]. The R-
O parameters for both pipeline steels derived from fitting the corresponding true stress-true strain data using Eq. (1) are
given in Section 3.2.

Consider first the results for the material with continuous strain hardening behavior displayed in Fig. 14a and b. Here, the
predicted curves are derived from using Eq. (11) with o« =1 and n = 12 in which factor h; is obtained by a parabolic interpo-
lation of the hy-values for n =5, 10 and 20 given in previous Section 4. As could be expected, the predicted curves for both
crack configurations (a/t = 0.2 and 0.5) are practically indistinguishable from the finite element results since the R-0 fit pro-
vides a very good description of the stress-strain data set. Now, direct attention to the variation of ] with M/M, for the mate-
rial exhibiting a yield plateau shown in Fig. 15a and b. Similarly to the previous analyses, the predicted curves are derived
from using Eq. (11) but with the R-0 parameters given by « = 9.5 and n = 6.6; as before, factor h; is conveniently interpolated
from the h;-values for n=5, 10 and 20. Over the loading range dominated by the effects of the Liiders strains
(0.75 < M/Mp < 1.0), the finite element results fall well below the predicted curves, particularly for the deep crack config-
uration. After this transitional behavior, however, both curves are essentially similar and provide no significant differences in
the J vs. M/M, relationship.

While rather limited, the results in Figs. 14 and 15 provide compelling evidence that the proposed estimation scheme can
accurately characterize the crack-tip driving forces, ] and CTOD, in circumferentially cracked pipes subjected to bending load.
This seems particularly true for larger loading and deformation levels (M/M, > 1.1—1.21), which would most likely be the
case of interest in reeled pipes. Nevertheless, we consider the debate over the sensitivity of ] and CTOD estimates derived
from the fully plastic solution on the R-O power-law fit still valid. This issue should be addressed in future studies.
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6. J estimation for circumferentially cracked pipes subjected to reeling

The accurate evaluation of the crack-tip driving forces during the reeling process and subsequent operation plays a key role
in fitness-for-service analyses and integrity assessments of pipeline girth welds. To demonstrate the effectiveness of the meth-
odology presented previously in describing adequately the crack-tip driving forces of in-service cracked configurations, this
section examines the prediction of the maximum J-value attained during pipeline installation by the reeling method [1,2]
based upon current defect assessment procedures for submarine pipelines such as DNV OS-F101 [34]. The verification studies
conducted here compare predictions of the maximum J-values for circumferentially cracked pipelines with varying crack con-
figuration based upon the fully plastic solutions described here with the corresponding crack-tip driving forces obtained di-
rectly from the finite element analyses presented in previous Section 3. Numerical simulation of the reeling is performed by
considering a reel drum with diameter @, = 15,000 mm modeled as the rigid surface represented in Fig. 3a. The analyzed pipes
have outside diameter, D, = 344.5 mm (13.5 in.), thickness, t=20.6 mm (D,/t = 16.7) and external, circumferential surface
flaws with length 2c¢ = 100 mm (0/7 = 0.073) and different crack depth (a) over pipe wall thickness (t) ratios: a/t=0.1, 0.2,
0.3 and 0.4 (see Fig. 1). The material is an API 5L Grade X60 pipeline steel with 483 MPa yield stress (ay,) at room temperature
(20 °C). Fig. 4b displays the true stress-strain data for this pipeline steel [26] which was utilized in the numerical computations.

Fig. 16a provides the evolution of crack-tip driving forces, as quantified by J, with increased load-line displacement (LLD)
and varying a/t-ratios for the analyzed cracked pipes. The LLD is defined as previously illustrated in Fig. 3. The effect of crack
depth, a, on J is amply demonstrated by the results in Fig. 16a. The crack-tip driving forces rise slowly in the initial stage of
reeling (as characterized by LLD) and then more rapidly as the reeling continues. As could be expected, there is a strong effect
of a/t-ratio on J, particularly as the crack depth increases. A maximum value of driving force (which can be interpreted as a
“plateau” value) is reached at LLD = ~3000 mm for all a/t-ratios. This load level marks the pipe curvature at which the reeling
process ceases to control the crack opening (see Fig. 3). Here, a large section of the pipe has entirely contacted the reel drum so
that the strong bending loading which arises from the reeling process with increased LLD does not affect crack opening
anymore.

The verification analysis to evaluate the maximum J values for the reeled cracked pipes based upon the fully plastic solu-
tions described in Section 2.2 proceeds as follows. The applied bending moment entering into previous Eqs. (11) and (16) is
determined from first evaluating the maximum bending strain which the reeled is subjected to and then computing the
bending moment using available moment-strain relationships. Under pure bending, the longitudinal bending strain, &,
for a pipe with outside diameter, D,, is given by

g De
2 = 3R, + D

where R, is the bending radius. For the reeled pipe, the bending strain attains its maximum value, &2, .., when R, = &,/2
yielding &b, = 0.0225.

A simpler finite element analysis for the cracked pipes under pure bending (no contact with the rigid reel drum is em-
ployed) now characterizes the relationship between the applied bending moment and the longitudinal (bending) strains.
Fig. 16b shows the moment-longitudinal strain response for all crack configurations considered. The figure also includes
the evolution of M with & for an uncracked pipe. The mechanical behavior characterized in terms of the moment-strain rela-
tionship for all analyzed configurations, including the uncracked pipe, is virtually unchanged with crack size and depends
only on the mechanical properties of the material and on the D,/t-ratio. Such features have important implications in defect
assessment procedures as evaluation of the applied bending moment is more easily accomplished through a simpler finite
element analysis for an uncracked pipe which generally demands less computational resources than the corresponding
cracked pipe. The present findings are fully in accord with previous numerical results obtained by @stby et al. [35] for pipe-
lines subjected to large plastic deformation under bending.
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Fig. 16. (a) Crack-tip driving forces for the cracked reeled pipe with 2c = 100 mm and increased LLD for varying a/t-ratios and (b) Moment-longitudinal
strain response for all analyzed crack configurations.
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Table 7
Comparison of predicted (maximum) J-value based upon the fully plastic solutions and the numerical maximum J attained in the reeling simulation for each
analyzed cracked pipe.

pipe conﬁguration (a/t) Jreel (kjlmz) ]pred (kj/mz) .’reel/]pred
0.1 161.0 167.1 0.96
0.2 467.0 463.7 1.01
0.3 1055.0 1022.9 1.03
0.4 1755.0 1682.2 1.04

Evaluation of the maximum J-value for the reeled cracked pipes follows from using Egs. (11) and (16) with the bending
moment, M, at the deformation level &2, . = 0.0225 determined from the moment-longitudinal strain response displayed in
Fig. 13b. Further, factor h; corresponding to D./t = 16.7 and a material with n =12 (the Ramberg-0Osgood exponent derived
from a curve fitting to the true stress—true strain data of Fig. 4b - see Section 3.2) is obtained based upon a parabolic inter-
polation using the hi-values for n =5, 10 and 20. Table 7 compares the predicted (maximum) J-value based upon the proce-
dure outlined above, denoted J,.q, and the numerical maximum J attained in the reeling simulation, J., for each analyzed
cracked pipe. Despite the inherent difficulties and the more complex stress state arising from the reeling analysis compared
to a pure bending condition, errors in predicted maximum J-values are less than 4%. Such close agreement of fully-plastic
estimates and finite element J-values provides strong support to use the present methodology in defect assessments of cir-
cumferentially cracked pipes under bending loading including reeled pipelines.

7. Summary and conclusions

This work provides an estimation procedure to determine the J-integral and CTOD for pipes with circumferential surface
cracks subjected to bending load for a wide range of crack geometries and material properties based upon fully plastic solu-
tions. In the present study, attention is directed to a circumferentially cracked pipe with surface flaws having different crack
depth (a) over pipe wall thickness (t) ratios and varying crack length for different strain hardening properties and outside
diameters (D./t). The methodology derives from fully plastic descriptions of ] and CTOD incorporating limit load solutions
for the cracked component to determine nondimensional functions h; and h, applicable to a wide range of crack geometries
and material properties characteristic of structural, pressure vessel and pipeline steels.

The extensive set of nonlinear, 3-D finite element analyses conducted in this study provides a definite full set of solutions
for ] and CTOD which enters directly into fitness-for-service (FFS) analyses and defect assessment procedures of cracked
pipes and cylinders subjected to bending load. The associated dimensionless h-values are derived from a least square fitting
to the linear evolution of normalized J, with (M/Mo)™™! for quantities which follow a proportional dependence of J, on the
applied loading (M). A strong linear relationship holds across all configurations with high (n = 5) and moderate (n = 10) strain
hardening properties. For the low hardening material (n = 20), such strong linear relation is warranted for crack sizes in the
range a/t < 0.25 which is well within the limits routinely adopted in design, fitness-for-service assessments as well as non-
destructive testing examination.

Verification analyses conducted on reeled cracked pipes demonstrated the capability of the present fully plastic solutions
in predicting the maximum J values attained during the reeling process. Moreover, an exploratory sensitivity analysis to as-
sess the robustness of the Ramberg-0sgood power-law fit to model the material’s stress—strain response reveals a relatively
minor effect of the power-law fit, particularly for larger loading and deformation levels beyond the Liiders strain range, in
characterizing the crack-tip driving forces based upon the estimation procedure described here. While we have not explored
other crack configurations and material properties, the relative operational simplicity compared to full 3-D analyses and the
close agreement between predicted and finite element results provide a compelling support to adopt the present method-
ology as an engineering tool to estimate crack driving forces in routine fitness-for-service analyses.

It should be noted that a key feature in the success of the estimation procedure for J and CTOD lies also in the accurate
evaluation of the applied bending moment directly entering into Egs. (11) and (12). Because the fully plastic solution for the
crack driving forces depend upon (M/M,)""', small variations in load potentially lead to large changes in J and CTOD, par-
ticularly for higher values of the strain hardening exponent. Employing a simple procedure to define the relationship be-
tween applied moment and global strain for the reeled cracked pipe did provide highly accurate maximum J-values, but
the overall robustness of the approach for other crack configurations and loading conditions remain untested. An investiga-
tion along this line is in progress. Ongoing work with the fully plastic solution framework also focuses on deriving h-values
for circumferentially cracked pipes under combined bending, tension and internal pressure as well as for overmatched girth
welds and increased D,/t-ratios.
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